Differential biotransformation of the enantiomers of isoidide dinitrate in isolated rat aorta

Author:

Stewart David H.,Hayward L. Douglas,Bennett Brian M.

Abstract

Previous studies have demonstrated that the D-enantiomer of isoidide dinitrate (IIDN) is 10-fold more potent than the L-enantiomer for relaxation and cyclic GMP accumulation in isolated rat aorta. To test whether preferential biotransformation of D-IIDN to a species that activates guanylate cyclase is the basis for this observed enantioselectivity, paired segments of rat aorta were exposed to D- and L-IIDN and the tissue accumulation of the parent compound and the formation of their respective metabolites (D- and L-isoidide mononitrate, IIMN) were determined. The extent of relaxation of rat aorta following exposure to 2 μM D-IIDN was greater than that by L-IIDN over a 5-minute time course, and this was associated with a higher rate of D-IIDN biotransformation to D-IIMN at all time points. In addition, the rate of D-IIDN biotransformation was greater than that of L-IIDN at most IIDN concentrations tested. By contrast, the amount of D- and L-IIDN in the tissue was the same at all time points and concentrations tested, indicating that selective uptake of D-IIDN into blood vessels did not occur. When tissues were made tolerant to organic nitrate-induced relaxation by treatment with a high concentration of glyceryl trinitrate, the biotransformation of both D- and L-IIDN was attenuated. This suggests that mechanism-based biotransformation may be affected during tolerance development. Furthermore, the association of preferential D-IIDN biotransformation with its greater potency for vasodilation and cyclic GMP accumulation suggests than an enantioselective site for biotransformation is an important component of organic nitrate-induced vasodilation.Key words: biotransformation, vascular smooth muscle, organic nitrates, isoidide dinitrate, enantiomers.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3