Using drone mapping to evaluate error of plot-based field surveys and its effects on moderate spatial resolution remote sensing retrieval of lichen cover

Author:

Pouliot Darren1ORCID,Mao Mao1,Fraser Robert H.2ORCID,Kennedy Blair1,Leblanc Sylvain G.2ORCID,He Liming2,Chen Wenjun2

Affiliation:

1. Landscape Science and Technology Division, Environment and Climate Change Canada, 1125 Colonel By Drive, Ottawa, ONK1A 0H3, Canada

2. Canada Centre for Mapping and Earth Observation, Natural Resources Canada, 580 Booth Street, Ottawa, ONK1A 0E4, Canada

Abstract

Effective plot-based field sampling involves a trade-off between implementation efficiency and sample error. Optimal field sampling therefore requires quantifying the sample error under various sampling designs. For remote sensing applications, it is also important to understand how field sample error and training sample size (the number of pixels) affect the retrieval of surface properties. In this research, drone imagery was used to simulate field plots and investigate plot sampling error for forage lichen cover in relation to plot size, number of plots, and sampling strategy. The effect of this error on remote sensing-based lichen cover retrieval was evaluated using varying training sampling sizes in two different study regions in northern Canada. Results showed that cover with high spatial variability increased the number of plots or plot size required to achieve a specified level of error. For lichen cover retrieval at moderate spatial resolution (10–30 m), field sampling (plot size and number of plots) did not have as significant of an effect as regional differences (spectral separability of cover types), sensor, and the number of pixels used for model training. This plot simulation approach using drone images can be applied to other surface properties and regions to provide field sampling guidance.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences,General Agricultural and Biological Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3