Properties and stratigraphy of polar ice patches in the Canadian High Arctic reveal their current resilience to warm summers

Author:

Davesne Gautier12,Fortier Daniel12,Domine Florent34

Affiliation:

1. Cold Regions Geomorphology and Geotechnical Laboratory, Département de géographie, Université de Montréal, Montréal, QC H3T 1J4, Canada.

2. Centre for Northern Studies, Université Laval, Québec, QC G1V 0A6, Canada.

3. Takuvik Joint International Laboratory, Université Laval, Québec, QC G1V 0A6, Canada.

4. CNRS-INSU (France), Département de chimie and Centre for Northern Studies, Université Laval, Québec, QC G1V 0A6, Canada.

Abstract

Ice patches are ubiquitous in polar regions and are a key element for landscape evolution. We present new insights into polar desert ice patch formation based on snow and ice properties at Ward Hunt Island (Canadian High Arctic, 83°N). Our results demonstrate that ice patches are composed of two distinct units. The upper unit is characterized by very fine granular and bubbly ice with a clear oblique layering. By contrast, the lower unit is strikingly different with coarse crystals, lower porosity, and a high frequency of fractures. For both units, superimposed ice formation at the base of the deep snowpack stands out as the primary ice aggradation process. The distinct properties of the lower unit likely result from a long period of kinetic ice crystal growth indicating a minimum age of several hundred years. A radiocarbon date of 3 487 ± 20 cal BP suggests that ice patches could potentially date back to the late Holocene. This old ice was recently truncated during warmer summers between 2008 and 2012, but the ice patch quickly recovered its volume during cooler summers. The old age of the ice patches and their rapid regeneration after melt events suggest their resilience to current warmer summers.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences,General Agricultural and Biological Sciences,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3