Author:
Bunch J. N.,Harland R. C.
Abstract
Standing stocks of bacteria in the bottom of first-year sea ice at Frobisher Bay, N.W.T., increased fivefold between March and May (1985 and 1986) and constituted up to 5% of particulate organic carbon (POC). Autoradiography demonstrated that approximately one-third of the bacterial assemblage incorporated radioactive thymidine. The mean volume of cells was six times larger than that in the underlying water, and the assemblage was dominated by rod-shaped cells rather than the coccus-shaped cells prevalent in the water column. Bacterial carbon production by 3H-thymidine incorporation amounted to 0.04 mg carbon m−2∙h−1, or a doubling time of about 22 h, in the bottom ice surface and 0.01 mg carbon m−3∙h−1 in the underlying water. The concentration of dissolved organic carbon (DOC) was generally much higher in the bottom ice surface than in the underlying water, and was closely related to rate of cell production. A model of bacterial dependancy on DOC derived from primary production suggests that bacteria are important in the localized production of POC in the bottom of arctic sea ice, and contribute to an early source of nutrition for higher trophic levels before summer production in open water.
Publisher
Canadian Science Publishing
Subject
Aquatic Science,Ecology, Evolution, Behavior and Systematics
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献