Author:
Sinclair J A,Lochmiller R L
Abstract
Seasonal variations in photoperiod, temperature, and population density have been shown to modulate immune responsiveness of animals in laboratory studies. To examine these associations under natural conditions, we monitored 3 populations of prairie voles (Microtus ochrogaster) for temporal variations in selected immunological parameters, population density, and survival rate from winter 1996 to spring 1997. Spontaneous and cytokine-stimulated T-cell proliferative responsiveness of prairie voles peaked in winter and declined in spring. Relative organ mass, hemolytic-complement activity, and in vivo hypersensitivity responses varied temporally but showed no clear seasonal trend. The population density and survival rate of all 3 prairie vole populations varied temporally and correlated with measures of immunity. Multiple regression analysis indicated that the model containing relative spleen mass, cytokine-stimulated T-cell proliferation, and in vivo hypersensitivity explained a significant amount of variability in population density, while cytokine-stimulated T-cell proliferation and relative thymus mass explained a significant amount of variability in survival rate. The results suggest that seasonal environmental changes can enhance immune responsiveness of a host and may counteract the immunoenhancing effects of photoperiod in wild populations of prairie voles. Our results also suggest that there is an association between immune function and demography in wild populations.
Publisher
Canadian Science Publishing
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献