Effects of imidazolines on neurogenic contraction in isolated urinary bladder detrusor strips from rabbit

Author:

He Hong-Mei12,Ren Lei-Ming1,Tian He-Lin2,Lu Hai-Gang3,Zhao Ding1

Affiliation:

1. School of Pharmacy, Hebei Medical University, 361 East Zhong-shan Road, Shijiazhuang 050017, Hebei, P.R. China.

2. Department of Pharmacology, School of Medicine, Hebei University of Engineering, Handan 056029, Hebei, P.R. China.

3. Hebei Professional College in Chemical & Pharmaceutical Sciences, Shijiazhuang 050031, Hebei, P.R. China.

Abstract

Moxonidine and clonidine, which are imidazoline compounds, are sympathetic modulators used as centrally acting antihypertensive drugs. Moxonidine, clonidine, and agmatine produce extensive effects in mammalian tissues via imidazoline recognition sites (or receptors) or α2-adrenoceptors. To investigate the effects of imidazolines on the function of the urinary bladder, we tested the effects of moxonidine, clonidine, and agmatine on the neurogenic contraction induced by electric field stimulation, and on the post-synaptic receptors in isolated urinary bladder detrusor strips from rabbit. Both moxonidine at 1.0–10.0 µmol/L and clonidine at 0.1–10.0 µmol/L inhibited electric-field-stimulation-induced contraction in a concentration-dependent manner, but not agmatine (10.0–1000.0 µmol/L). Both moxonidine and clonidine failed to affect carbachol or adenosine-triphosphate-induced contractions; however, 1000.0 µmol/L agmatine significantly increased these contractions. Our study indicates that (i) moxonidine and clonidine produce a concentration-dependent inhibition of the neurogenic contractile responses to electric field stimulation in isolated detrusor strips from male New Zealand rabbits; (ii) post-synaptic muscarinic receptor and purinergic receptor stimulation are not involved in the responses of moxinidine and clonidine in this study; (iii) the inhibitory effects of these agents are probably not mediated by presynaptic imidazoline receptors.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3