Mycorrhizal networks: a review of their extent, function, and importance

Author:

Simard Suzanne W,Durall Daniel M

Abstract

It is well known from laboratory studies that a single mycorrhizal fungal isolate can colonize different plant species, form interplant linkages, and provide a conduit for interplant transfer of isotopic carbon, nitrogen, phosphorus, or water. There is increasing laboratory and field evidence that the magnitude and direction of transfer is influenced by physiological source–sink gradients between plants. There is also evidence that mycorrhizal fungi play a role in regulating transfer through their own source–sink patterns, frequency of links, and mycorrhizal dependency. Although it is plausible that connections are extensive in nature, field studies have been hampered by our inability to observe them in situ and by belowground complexity. In future, isotopic tracers, morphological observations, microsatellite techniques, and fluorescent dyes will be useful in the study of networks in nature. Mycorrhizal networks have the potential to influence patterns of seedling establishment, interplant competition, plant diversity, and plant community dynamics, but studies in this area are just beginning. Future plant community studies would benefit from concurrent experimental use of fungal network controls, isotopic labeling, direct observation of interplant linkages, and long-term observation in the field. In this paper, we review recent literature on mycorrhizal networks and interplant carbon transfer, suggest future research directions, and highlight promising scientific approaches.Key words: common mycorrhizal network, carbon transfer, source–sink, establishment, competition, diversity.

Publisher

Canadian Science Publishing

Subject

Plant Science

Cited by 310 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3