Differential effects of turbidity on prey consumption of piscivorous and planktivorous fish

Author:

De Robertis Alex,Ryer Clifford H,Veloza Adriana,Brodeur Richard D

Abstract

Contrast degradation theory predicts that increased turbidity decreases the visibility of objects that are visible at longer distances more than that of objects that are visible at short distances. Consequently, turbidity should disproportionately decrease feeding rates by piscivorous fish, which feed on larger and more visible prey than particle-feeding planktivorous fish. We tested this prediction in a series of laboratory feeding experiments, the results of which indicated that prey consumption by two species of planktivorous fish (juvenile chum salmon (Oncorhynchus keta) and walleye pollock (Theragra chalcogramma)) is much less sensitive to elevated turbidity than piscivorous feeding by sablefish (Anoplopoma fimbria). Planktivorous feeding in the turbidity range tested (0–40 nephelometric turbidity units (NTU)) was reduced at high light intensity, but not at low light intensity. Comparatively low (5–10 NTU) turbidity decreased both the rate at which sablefish pursued prey and the probability of successful prey capture. These results suggest that turbid environments may be advantageous for planktivorous fish because they will be less vulnerable to predation by piscivores, but will not experience a substantial decrease in their ability to capture zooplankton prey.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3