Abstract
Data on chromosome pairing in haploids and interspecific hybrids of Solanum, sect. Petota reported in the literature were used to determine whether the diploidlike chromosome pairing that occurs in some of the polyploid species of the section is regulated by the genotype or brought about by some other mechanism. The following trends emerged from these data. Most of the polyploid × polyploid hybrids had high numbers of univalents, which seemed to indicate that the polyploid species were constructed from diverse genomes. Haploids, except for those derived from S. tuberosum, had incomplete chromosome pairing. All hybrids from diploid × diploid crosses had more or less regular chromosome pairing, which suggested that all investigated diploid species have the same genome. Likewise, hybrids from polyploid × diploid crosses had high levels of chromosome pairing. These paradoxical results are best explained if it is assumed that (i) the genotypes of most polyploid species, but not those of the diploid species, suppress heterogenetic pairing, (ii) that nonstructural chromosome differentiation is present among the genomes of both diploid and polyploid species, and (iii) the presence of the genome of a diploid species in a polyploid × diploid hybrid results in promotion of heterogenetic pairing. It is, therefore, concluded that heterogenetic pairing in most of the polyploid species is genetically suppressed.
Publisher
Canadian Science Publishing
Subject
Cell Biology,Plant Science,Genetics