Adaptation and acclimation of higher plants at the enzyme level: thermal properties of NAD malate dehydrogenase of two species of Aster (Asteraceae) and their hybrid adapted to contrasting habitats

Author:

Brouillet Luc,Simon Jean-Pierre

Abstract

Thermal and kinetic properties of NAD malate dehydrogenase (MDH) were investigated in clonal populations of two species of Aster and their hybrid: A. acuminatus, a forest understory species; A. nemoralis, a sphagnum-bog species; and A. blakei, their hybrid occurring at the bog–forest ecotone. The populations were collected within a 300 m radius in southwestern Quebec. Compared with A. acuminatus, the MDH of crude extracts from A. nemoralis had lower thermostability in both 5- and 10-min assays at 55 °C, and reduced apparent energy of activation (Ea) in the temperature range of 15–25 °C. However, these differences were not maintained in purified extracts of the species and may be attributed to higher phenolase and peptidase activity in crude extracts of A. nemoralis. The ratio of MDH activity over total protein concentration, or fresh weight leaf tissue, was higher in A. acuminatus than in A. nemoralis. Most values for these MDH properties of A. blakei were intermediate between those of the two parents. No differences, however, were observed for the substrate binding ability (Km) of MDH in the three taxa. Electrophoretic analyses show no qualitative differentiation in the enzyme profiles of MDH of the three taxa, which consist of two mitochondrial and six cytosolic isozymes. Mitochondrial isozymes were more thermostable but no differences in thermostability were observed among the forms of the species. The thermal and kinetic properties of malate dehydrogenase, as measured in situ, have not been substantially modified by the contrasting microclimatic regimes associated with the habitats of A. acuminatus and A. nemoralis.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3