Photoperiodism and rhythmic flower induction: complete substitution of inductive darkness by light

Author:

Cumming Bruce G.

Abstract

In a short-day response type of Chenopodium rubrum (ecotype 60°47′ N), light of a relatively low red/far-red ratio—but of sufficient energy to allow photosynthesis—can bring about induction of flowering when it completely replaces a single dark period interrupting continuous white light. When high-intensity white incandescent light was interrupted for less than a 24-hour period, a longer period of inductive light than darkness was required even for minimal induction. An inductive light interruption of at least 60 hours was required for 100% flower induction. The result of such forcing of the system by inductive light, as compared with the circadian rhythmic induction that occurred in darkness, was a change towards a more linear inductive response and there were indications (requiring confirmation) of oscillations of higher frequency.When seedlings were maintained continuously in optimal inductive light or in darkness, after an initial high intensity white light period, there was some flower initiation within 5 days in inductive light, but not until about 10 days in darkness, and then only when sucrose was supplied throughout darkness.There were suboptimal and (inhibitory) supraoptimal effects on induction when the R/FR ratio and (or) the energy of inductive light were decreased or increased, respectively. These results, in conjunction with the effects that were obtained when glucose and 3(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) were applied in inductive light as compared with darkness, implicate both photosynthate and phytochrome-Pfr as having a positive (promotive) effect during normal inductive darkness.These findings emphasize that the important controls in photoperiodism and flowering may be quantitative rather than qualitative in character, because it can now be questioned whether there is any essential dark-requiring reaction in the induction not only of long-day but also of short-day plants.

Publisher

Canadian Science Publishing

Subject

Plant Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3