Immunogold localization of callose and other plant cell wall components in soybean roots infected with the oomycetePhytophthora sojae

Author:

Enkerli K.,Mims C. W.,Hahn M. G.

Abstract

Immunolabeling and transmission electron microscopic techniques were used to investigate the chemical nature of wall appositions in roots of susceptible and resistant soybean plants inoculated with Phytophthora sojae race 2. The extrahaustorial matrix associated with the haustorium of Phytophthora sojae also was examined. Antibodies against (1 → 3)-β-glucan, a terminal α-fucosyl-containing epitope present in xyloglucan and rhamnogalacturonan I, and an arabinosylated (1 → 6)-β-galactan epitope present in arabinogalactan proteins were used. (1 → 3)-β-Glucan (callose), xyloglucan, and arabinogalactan proteins were found to be localized in all wall appositions regardless of how long after inoculation the appositions developed or whether plants were susceptible or resistant to Phytophthora sojae. (1 → 3)-β-Glucan also was found in fungal walls and at host cell plasmodesmata. None of the four antibodies labeled the extrahaustorial matrix. The antibody against arabinogalactan protein recognized the host plasma membrane, but not the invaginated host plasma membrane associated with the extrahaustorial matrix. This result indicates that the properties or the composition of the host plasma membrane may change locally once it becomes an extrahaustorial membrane. Key words: Phytophthora sojae, Glycine max, callose, immunolabeling, wall appositions, papillae.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3