Author:
Cabana Gilbert,Tremblay Alain,Kalff Jacob,Rasmussen Joseph B.
Abstract
The trophic structure of pelagic communities in glaciated regions is highly variable due to restricted dispersal of glacial relict taxa and recent species introduction. Much of the between-lake variation in Hg in lake trout (Salvelinus namaycush) flesh from the St. Lawrence system (non-point-source contaminated lakes), which spans more than two orders of magnitude (0.03–3.96 μg/g), results from differences in the length of pelagic food chains. Hg levels from the longest food chains where pelagic forage fish and the crustacean Mysis relicta were present were about 3.6-fold higher than those from the shortest food chains where these last two trophic components were missing. A lack of correlation between Hg levels in small-mouth bass (Micropterus dolomieu), which do not exploit the pelagic food chain, and the length of the pelagic food chain confirmed that the positive relationship observed in lake trout could not be attributed to the confounding effect of some physicochemical factors covarying with our pelagic food chain classification. Our results confirmed that the food chain biomagnification model developed by Rasmussen et al. (1990. Can. J. Fish. Aquat. Sci. 47: 2030–2038) to predict PCB levels in lake trout can also be applied to Hg biomagnification.
Publisher
Canadian Science Publishing
Subject
Aquatic Science,Ecology, Evolution, Behavior and Systematics
Cited by
231 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献