Behavior of a fine-grained soil during the Loma Prieta earthquake

Author:

Boulanger Ross W,Meyers Mark W,Mejia Lelio H,Idriss Izzat M

Abstract

Results of an investigation into the behavior of a fine-grained clayey soil at Moss Landing during the 1989 Loma Prieta earthquake are presented. A deposit of this soil underlies portions of the Moss Landing Marine Laboratory that experienced up to 1.3 m of lateral spreading deformations during this magnitude 7 earthquake. Silty clay from the deposit erupted to the surface in a "soil boil" characteristic of liquefaction, during and immediately after the earthquake. A sample from the silty clay boil had a liquid limit of 38, a plasticity index of 17, and a <5 µm fraction of 24%, and thus would be considered nonliquefiable according to commonly used criteria. Analysis of cyclic triaxial test data suggests that portions of the silty clay deposit likely developed high residual excess pore pressures (ru,r approx 80-90%) and significant shear strains during the earthquake and thus likely contributed to the observed lateral deformations. The field and laboratory data show that commonly used criteria for identifying "liquefiable" clayey soils should be applied with caution and should not be indiscriminately viewed as a substitute for detailed laboratory and in situ testing of low plasticity fine-grained soils.Key words: liquefaction, cyclic loading, silt, clay, earthquake, case history.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3