Abstract
Inhibition of bioluminescence in Photobacterium phosphoreum by cerulenin has been demonstrated to be due to a specific inactivation of the acyl-CoA reductase subunit of the fatty acid reductase complex required for synthesis of the aldehyde substrate for the luminescent reaction. In contrast, the activities of the other luminescence-related enzymes, acyl-protein synthetase, acyl-transferase, and luciferase, were unaffected by cerulenin. Myristoyl-CoA, but not NADPH, protected the acyl-CoA reductase against cerulenin inhibition. Cerulenin blocked the acylation of the reductase with myristoyl-CoA and the reaction with N-ethylmaleimide. A shift in mobility of the reductase polypeptide on sodium dodecyl sulfate – polyacrylamide gel electrophoresis occurred after reaction with cerulenin, a shift which could be blocked by reaction with N-ethylmaleimide. These results demonstrate that cerulenin blocks aldehyde synthesis by covalent reaction with the acyl-CoA reductase and indicate that the reaction may occur at a cysteine residue involved in the formation of the acyl–reductase intermediate.Key words: bioluminescence, cerulenin, acyl-CoA reductase.
Publisher
Canadian Science Publishing
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献