Heat shock-induced acquisition of thermotolerance at the levels of cell survival and translation inXenopusA6 kidney epithelial cells

Author:

Phang Donna,Joyce Elizabeth M,Heikkila John J

Abstract

In this study we have investigated the acquisition of thermotolerance in a Xenopus laevis kidney A6 epithelial cell line at both the level of cell survival and translation. In cell survival studies, A6 cells were incubated at temperatures ranging from 22 to 35°C for 2 h followed by a thermal challenge at 39°C for 2 h and a recovery period at 22°C for 24 h. Optimal acquisition of thermotolerance occurred at 33°C. For example, exposure of A6 cells to 39°C for 2 h resulted in only 3.4% survival of the cells whereas prior exposure to 33°C for 2 h enhanced the survival rate to 69%. This state of thermotolerance in A6 cells was detectable after 1 h at 33°C and was maintained even after 18 h of incubation. Cycloheximide inhibited the acquisition of thermotolerance at 33°C suggesting the requirement for ongoing protein synthesis. The optimal temperature for the acquisition of translational thermotolerance also occurred at 33°C. Treatment of A6 cells at 39°C for 2 h resulted in an inhibition of labeled amino acid incorporation into protein which recovered to approximately 14% of control after 19 h at 22°C whereas cells treated at 33°C for 2 h prior to the thermal challenge recovered to 58% of control levels. These translationally thermotolerant cells displayed relatively high levels of the heat shock proteins hsp30, hsp70, and hsp90 compared to pretreatment at 22, 28, 30, or 35°C. These studies demonstrate that Xenopus A6 cells can acquire a state of thermotolerance and that it is correlated with the synthesis of heat shock proteins.Key words: Xenopus laevis, heat shock protein, hsps, A6 cells, chaperone, thermotolerance.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3