Dynamic analysis of buildings for earthquake-resistant design

Author:

Saatcioglu Murat,Humar JagMohan

Abstract

The proposed 2005 edition of the National Building Code of Canada specifies dynamic analysis as the preferred method for computing seismic design forces and deflections, while maintaining the equivalent static force method for areas of low seismicity and for buildings with certain height limitations. Dynamic analysis procedures are categorized as either linear (elastic) dynamic analysis, consisting of the elastic modal response spectrum method or the numerical integration linear time history method, or nonlinear (inelastic) response history analysis. While both linear and nonlinear analyses require careful analytical modelling, the latter requires additional considerations for proper simulation of hysteretic response and necessitates a special study that involves detailed review of design and supporting analyses by an independent team of engineers. The paper provides an overview of dynamic analysis procedures for use in seismic design, with discussions on mathematical modelling of structures, structural elements, and hysteretic response. A discussion of the determination of structural period to be used in association with the equivalent static force method is presented.Key words: dynamic analysis, earthquake engineering, elastic analysis, fundamental period, hysteretic modelling, inelastic analysis, National Building Code of Canada, seismic design, structural analysis, structural design.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of wavelet neural network for dynamic analysis of moment resisting frames;Asian Journal of Civil Engineering;2023-07-15

2. Seismic analysis of G+3 R.C. framed residential building at zone 5 using software;INTERNATIONAL CONFERENCE ON MATERIALS ENGINEERING AND MANUFACTURING SYSTEMS: ICMEMS2022;2023

3. The Whale Optimization Algorithm Based ANN for Predicting the Fundamental Period of Light-Frame Wood Buildings;Proceedings of the 7th International Conference on Architecture, Materials and Construction;2022

4. Artificial Neural Network Combined with Grey Wolf Optimizer for Period Determination of Light-Frame Wood Buildings;Proceedings of the 7th International Conference on Architecture, Materials and Construction;2022

5. A simplified fundamental period equation for RC buildings;Journal of the Croatian Association of Civil Engineers;2021-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3