Electromagnetic sounding and crustal electrical conductivity in the region of the Wopmay Orogen, Northwest Territories, Canada

Author:

Camfield P. A.,Gupta J. C.,Jones A. G.,Kurtz R. D.,Krentz D. H.,Ostrowski J. A.,Craven J. A.

Abstract

Temporal variations of the three components of the geomagnetic field were recorded at eight sites along a 240 km profile across the Early Proterozoic Wopmay Orogen. After an empirical separation of these data into normal and anomalous parts, horizontal-to-vertical-field transfer functions in the period range 40–1200 s display evidence for a minor anomaly spatially located near the allochthonous shelf margin at the eastern edge of the Hepburn Batholith. The observations can be partially simulated by a two-dimensional 20 ? m body (30 km wide, 2 km thick) embedded in the surface of a very resistive layered Earth model derived from inversion of magnetotelluric sounding data at a central station. The body correlates spatially with metamorphosed graphitic pelites of the Odjick Formation (Epworth Group), a unit of deep-water facies interpreted as continental slope–rise deposits. Laboratory measurements on samples of the pelite yielded resistivity values of the order of 104 ?∙m, so the enhanced conductivity of the body is more likely caused by water filling cracks associated with the pelites' well-developed cleavage and schistosity, rather than by the graphite. A scalar audiomagnetotelluric survey across the Wopmay fault zone, a prominent structure that bisects the orogen, gave results very much distorted by three-dimensional effects. The electric-polarization apparent resistivities of these data indicate a shallow conductor 2 km east of the fault scarp, 1–2 km wide. Models of the feature suggest that its vertical extent is at least 1–2 km.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3