Author:
Baimai V.,Trinachartvanit W.,Grote P. J.,Kijchalao U.,Tigvattananont S.,Poramarcom R.
Abstract
Natural populations of fruit flies of the Bactrocera dorsalis complex exhibit chromosomal variation based on differences in the amount and distribution of constitutive heterochromatin in the centromeric regions of the autosomes and the sex chromosomes. The chromosomal variation, coupled with differences in external morphology and host plant specific preferences, strongly suggest the existence of 5 closely related species within the B. dorsalis complex that have provisionally been designated B. dorsalis species B, C, D, and E in contrast with B. dorsalis s.s. (species A). Analysis of heterochromatin in autosomes and sex chromosomes has revealed 4 distinct groups of mitotic karyotypes. Bactrocera dorsalis is the only representative of Group I, which is characterized by the typical metacentric X chromosome and major blocks of centromeric heterochromatin in autosomes 5 and 6. Group 2 consists of species B and C, which show prominent landmarks of pericentric heterochromatin in all autosomes and in the X chromosome. Group 3 comprises species D, which is characterized by conspicuous blocks of pericentric heterochromatin in all autosomes but the long arm of the subtelocentric X chromosome is euchromatic and lacks a major portion of centromeric heterochromatin. Species E belongs to Group 4, which differs from Group 3 in having major blocks of heterochromatin at the distal portion of the X chromosome in addition to the prominent landmarks of pericentric heterochromatin in all autosomes. Chromosomal evolution among closely related species within the B. dorsalis complex clearly involves the presence or absence of constitutive heterochromatin in the centromeric regions of autosomes as well as in the X chromosome.Key words: Bactrocera dorsalis complex, metaphase karyotype, heterochromatin, chromosomal evolution.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,General Medicine,Biotechnology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献