Affiliation:
1. Centro de Investigaciones Ambientales de Lourizán, Apdo. 127, Pontevedra, 36080 Spain (e-mail: rzas.cifal@siam-cma.org).
Abstract
Although failure to account for spatial autocorrelation has been dramatic in some forest progeny trials, little attention has been paid to how this issue may affect selections within the trials. The effects of spatial autocorrelation of height growth on the estimation of genetic gain and on the spatial distribution of the selected trees were studied in four Pinus pinaster Ait. progeny trials that were rogued using different selection methods and intensities. When selections are based on unadjusted original values, selected trees tend to be located in the best microsites and are unlikely to be the most genetically superior. This resulted in a loss of genetic gain that varied between 10% and 20% and sometimes exceeded 30%. Differences in the loss of gain among different selection methods and intensities were minor and followed no clear pattern. Selecting on the basis of a conventional model resulted in spatial patterns of the retained trees that were clearly aggregated in all cases. However, selections based on spatially adjusted data resulted in random spatial patterns, except with family selection because of the use of multiple-tree plots. Because clumping of the retained trees may seriously affect the quantity and quality of the seed crop, breeders are strongly encouraged to use appropriate spatial models for roguing breeding seedling orchards.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献