Uniqueness of steady state and liquefaction potential

Author:

Negussey D.,Islam M.S.

Abstract

A given sand is presumed to have a unique steady-state line. The proximity of an initial state to the steady-state line is considered to be a measure of liquefaction potential. This line of reasoning and application in practice is based on data obtained predominantly from triaxial tests in compression-mode loading. In such tests, relative orientations of bedding plane and principal stress directions remain fixed while stress states along actual failure surfaces may range from active to passive. This study examines the uniqueness of the steady state relative to the mode of loading, form of consolidation, and initial anisotropy as induced by bedding orientation. A sample-preparation method was developed to form triaxial samples with different bedding orientations. Steady states of a uniform sand reached under compressional and extensional modes of triaxial undrained loading of samples with different bedding orientation are compared. Effects of isotropic and anisotropic consolidation are examined. The results indicate the steady-state line obtained for compression-mode loading is different from and does not apply for extension-mode loading. Use of a compression side steady-state line for extension-mode failure states would result in overestimation of steady-state strengths and unconservative stability evaluations. Key words : anisotropy, compression, extension, liquefaction, sand, steady state, triaxial.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Critical State and Grading Evolution of Rockfill Material under Different Triaxial Compression Tests;International Journal of Geomechanics;2020-02

2. The critical state and steady state of sand: A literature review;Marine Georesources & Geotechnology;2019-01-12

3. Factors Affecting Steady State Locus in Triaxial Tests;Geotechnical Testing Journal;2016-09-09

4. References;Soil Liquefaction;2015-09-10

5. Fabric and the critical state of idealized granular assemblages subject to biaxial shear;Computers and Geotechnics;2013-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3