Heterogeneous catalysis by phospholipase A2: formulation of a kinetic description of surface effects

Author:

Tinker David O.,Wei Jane

Abstract

The kinetics of hydrolysis of aqueous dispersions of long-chain, saturated phosphatidylcholines (PC) catalysed by Crotalus atrox phospholipase A2 (PLA) have been analysed, and a reaction mechanism proposed which takes surface effects into account. PLA is proposed to form an enzyme–substrate complex with surface substrate molecules, thereby undergoing a conformational change which exposes sites that interact with the lipid surface. After a hydrolytic event, the enzyme can either desorb from the surface (path 1), or diffuse along the surface to an adjacent substrate molecule (path 2). The path 1 dominated mechanism leads to Michaelis–Menten steady-state kinetics, and characterizes hydrolysis of gel phase PC. Evidence for saturation of the surface with PLA was obtained at high enzyme concentrations. The path 2 mechanism dominates when the desorption rate is very small; this mechanism describes hydrolysis of liquid crystalline phase PC and is characterized by an initial burst of hydrolysis followed by a very slow reaction. The velocities in these two phases of the reaction are independent of bulk PC concentration. When gel and liquid crystalline PC phases coexist, as in mixtures of dimyristoyl- and distearoyl-PC, the liquid crystalline phase is preferentially hydrolysed. Products of the reaction (lyso-PC and fatty acid) stimulate hydrolysis, apparently by stimulating desorption of PLA. The desorption rate constant appears to be a linear function of the surface concentrations of lyso-PC and fatty acid. The proposed model describes hydrolysis progress curves extremely well and is consistent with current ideas on the mechanism of catalysis by this enzyme.

Publisher

Canadian Science Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3