Darwinian fishery science: lessons from the Atlantic silverside (Menidia menidia)

Author:

Conover David O,Arnott Stephen A,Walsh Matthew R,Munch Stephan B

Abstract

The potential of fishing mortality to cause rapid evolutionary changes in life history has received relatively little attention. By focusing only on ecological responses, standard fisheries theory and practice implicitly assume either that genetic influences on life history in the wild are negligible or that natural selection and adaptation is a slow process that can be effectively ignored. Lack of contrary evidence has allowed these assumptions to persist. Drawing upon >25 years of research on the Atlantic silverside (Menidia menidia), we show that adaptive genetic variation in many traits is finely tuned to natural variation in climate. Much of this variation is caused by a gradient in size-selective winter mortality and involves two- to threefold changes in physiological traits that influence population productivity. Many other species are now known to display similar patterns. Harvest experiments show that these traits can evolve rapidly in response to size-selective fishing. Hence, the pool of genotypes that code for life history traits is a highly dynamic property of populations. We argue that the lessons from Menidia are applicable to many exploited species where similar observations would be difficult to obtain and advocate greater use of species models to address fundamental questions in fishery science.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3