In vitro kinetics of oxygen transport in erythrocyte suspension or unmodified hemoglobin solution from human and other animals

Author:

Peng Weiyan1,Wang Xiang1,Gao Wei1,Lan Ke1

Affiliation:

1. Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, P.R. China.

Abstract

Oxygen transport behavior in erythrocyte suspension or in hemoglobin solution was studied as a potential therapeutic model for the clinical treatment of blood loss, and this can also provide physiological data with which to evaluate blood substitutes. In the present project, we examined the in vitro kinetics of hemoglobin binding to and releasing oxygen, to provide detailed oxygen-flux measurements for unmodified hemoglobin solutions and erythrocyte suspensions in human, as well as other vertebrates. An in vitro method was used, based on a widely used artificial system, with the oxygen saturation level being detected in real time. Results from this study indicated that the kinetic curves of human erythrocyte suspensions and hemoglobin solutions were either S-shaped or hyperbolic, respectively. Based on these curves, the significance of T50emerged in our investigation, where T50is defined as the time needed for 50% hemoglobin to be saturated with oxygen, and reflects the efficiency with which hemoglobin carries oxygen. This parameter may be used to diagnose blood diseases, and could be a standard for evaluating blood substitutes. In this study, we also compared the T50of 4 species of vertebrates, and found that it shows a distinct efficiency of oxygen binding related to species, and potentially reveals the evolutionary function of hemoglobin and its possible adaptation to the environment.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3