Performance of ectomycorrhizal alders exposed to specific Canadian oil sands tailing stressors under in vivo bipartite symbiotic conditions

Author:

Beaudoin-Nadeau Martin1,Gagné André1,Bissonnette Cyntia2,Bélanger Pier-Anne2,Fortin J. André1,Roy Sébastien2,Greer Charles W.3,Khasa Damase P.1

Affiliation:

1. Centre d’étude de la forêt et Institut de biologie intégrative et des systèmes, Université Laval, Ste-Foy, QC G1V 0A6, Canada.

2. Centre SÈVE, Département de biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.

3. National Research Council, Biotechnology Research Institute, Montréal, QC H4P 2R2, Canada.

Abstract

Canadian oil sands tailings are predominately sodic residues contaminated by hydrocarbons such as naphthenic acids. These conditions are harsh for plant development. In this study, we evaluated the effect of inoculating roots of Alnus viridis ssp. crispa and Alnus incana ssp. rugosa with ectomycorrhizal fungi in the presence of tailings compounds. Seedlings were inoculated with 7 different strains of Paxillus involutus and Alpova diplophloeus and were grown under different treatments of NaCl, Na2SO4, and naphthenic acids in a growth chamber. Afterwards, seedling survival, height, dry biomass, leaf necrosis, and root mycorrhization rate were measured. Paxillus involutus Mai was the most successful strain in enhancing alder survival, health, and growth. Seedlings inoculated with this strain displayed a 25% increase in survival rate, 2-fold greater biomass, and 2-fold less leaf necrosis compared with controls. Contrary to our expectations, A. diplophloeus was not as effective as P. involutus in improving seedling fitness, likely because it did not form ectomycorrhizae on roots of either alder species. High intraspecific variation characterized strains of P. involutus in their ability to stimulate alder height and growth and to minimize leaf necrosis. We conclude that in vivo selection under bipartite symbiotic conditions is essential to select effective strains that will be of use for the revegetation and reclamation of derelict lands.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3