Affiliation:
1. Sección Inmunología, Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Argentina.
2. Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D.F., Mexico.
Abstract
Fast-growing mycobacteria such as Mycobacterium sp. and Mycobacterium smegmatis degrade natural sterols. They are a model to study tuberculosis. Interestingly, M. smegmatis has been found in river effluents derived from paper production, and therefore, it would be important to gain further insight into its capacity to synthesize steroids that are potential endocrine disruptors affecting the development and reproduction of fishes. To our knowledge, the capacity of M. smegmatis to synthesize estrogens and even testosterone has not been previously reported. Therefore, the objective of this study was to investigate the capacity of M. smegmatis to synthesize in vitro testosterone and estrogens from tritiated precursors and to investigate the metabolic pathways involved. Results obtained by thin-layer chromatography showed that 3H-progesterone was transformed to 17OH-progesterone, androstenedione, testosterone, estrone, and estradiol after 6, 12, or 24 h of incubation. 3H-androstenedione was transformed into testosterone and estrogens, mainly estrone, and 3H-testosterone was transformed to estrone and androstenedione. Incubation with 3H-dehydroepiandrosterone rendered androstenediol, testosterone, and estrogens. This ability to transform less potent sex steroids like androstenedione and estrone into other more active steroids like testosterone and estradiol or vice versa suggests that M. smegmatis can influence the amount of self-synthesized strong androgens and estrogens and can transform those found in the environment.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献