Is accelerated oxidation of lactate required for dichloroacetate to lower the level of lactate in blood?

Author:

Kamel Kamel S.,Cheema-Dhadli Surinder,Halperin Mitchell L.

Abstract

We examined mechanisms by which dichloroacetate (DCA), an activator of pyruvate dehydrogenase (PDH), led to a decrease in the concentration of lactate in blood in a unique "metabolic setting," where the concentration of lactate in blood was 5.4 ± 0.5 mmol/L. Elevated levels of lactate were induced in anaesthetized rabbits by the administration of a large dose of insulin. The rate of consumption of oxygen was 1.2 ± 0.1 mmol/min, the respiratory quotient was close to unity, and close to half of the PDH was in its active form; therefore, virtually all ATP synthesis should require flux through PDH. Hence, we predicted that DCA should not cause a significant decrease in the concentration of lactate in blood in this model. In contrast, if DCA was effective, new insights could be obtained into its mechanisms of action, at least in this setting. During steady-state hyperlactatemia, DCA was given as its sodium salt, 2 mmol/kg (n = 10); a control group (n = 5) received equimolar NaCl. Forty minutes later, the level of lactate in blood in the DCA group was 1.3 ± 0.2 mmol/L, significantly lower than in the NaCl group (4.2 ± 0.6 mmol/L). To determine the organ(s) responsible for removing lactate, arteriovenous differences were measured in organs drained by the jugular, femoral, and hepatic veins. There was no net uptake of lactate in these drainage beds after DCA was administered. From a quantitative analysis of the rate of removal of lactate and the rate of consumption of oxygen, it seems unlikely that the majority of the decrease in lactate could be directly attributed to an increase in its oxidation.Key words: lactic acidosis, dichloroacetate, pyruvate dehydrogenase, metabolism.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3