The multifunctional glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a novel macrophage lactoferrin receptor1This article is part of Special Issue entitled Lactoferrin and has undergone the Journal's usual peer review process.

Author:

Rawat Pooja1,Kumar Santosh1,Sheokand Navdeep1,Raje Chaaya Iyengar2,Raje Manoj1

Affiliation:

1. Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39A, Chandigarh 160036, India.

2. National Institute of Pharmaceutical Education and Research, Phase X, Sector 67, SAS Nagar, Punjab 160067, India.

Abstract

Several proteins with limited cell type distribution have been shown to bind lactoferrin. However, except in the case of hepatic and intestinal cells, these have not been definitively identified and characterized. Here we report that the multifunctional glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) functions as a novel receptor for lactoferrin (Lf) in macrophages. GAPDH is a well-known moonlighting protein, and previous work from our laboratory has indicated its localization on macrophage cell surfaces, wherein it functions as a transferrin (Tf) receptor. The KDvalue for GAPDH–lactoferrin interaction was determined to be 43.8 nmol/L. Utilizing co-immunoprecipitation, immunoflorescence, and immunogold labelling electron microscopy we could demonstrate the trafficking of lactoferrin to the endosomal compartment along with GAPDH. We also found that upon iron depletion the binding of lactoferrin to macrophage cell surface is enhanced. This correlated with an increased expression of surface GAPDH, while other known lactoferrin receptors CD14 and lipoprotein receptor-related protein (LRP) were found to remain unaltered in expression levels. This suggests that upon iron depletion, cells prefer to use GAPDH to acquire lactoferrin. As GAPDH is an ubiquitously expressed molecule, its function as a receptor for lactoferrin may not be limited to macrophages.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3