Resistance factors for settlement design

Author:

Fenton Gordon A,Griffiths D V,Cavers W

Abstract

To control serviceability problems arising from excessive settlement of shallow footings, geotechnical design codes generally include specifications regarding maximum settlement, which often govern the footing design. Once the footing has been designed and constructed, the actual settlement it experiences on a real three-dimensional soil mass can be quite different than expected, due to the soil's spatial variability. Because of this generally large variability (compared to other engineering materials, such as concrete and steel) and because this particular serviceability limit state often governs the design, it makes sense to consider a reliability-based approach to settlement design. This paper looks in some detail at a load and resistance factor design (LRFD) approach to limiting footing settlement. In particular, the resistance factors required to achieve a certain level of settlement reliability as a function of soil variability and site investigation intensity are determined analytically using random field theory. Simplified approximate relationships are proposed and tested using simulation via the random finite element method. It is found that the simplified relationships are validated both by theory and simulation and so can be used to augment the calibration of geotechnical LRFD code provisions with respect to shallow foundation settlement. Key words: reliability-based design, settlement, geotechnical, shallow foundation, random field, probability.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3