Abstract
Evidence is accumulating that interactions between different cell types are of paramount importance for CNS function, for example, release of the excitatory transmitter glutamate from neurons and its preferential uptake into astrocytes. Some information is also available about energy metabolism in different cell types, or more often in models of different cell types (e.g., synaptosomes, cultured neurons, cultured astrocytes). In this review an attempt is made not only to correlate information obtained with different cell models but also to integrate this information with in vivo data, with histochemical observations, and with results obtained using brain slices. The emerging patterns indicate that neurons, synaptosomes, and astrocytes are all capable of complete glycolysis and oxidation of glucose. Elevated extracellular concentrations of potassium, known to occur in vivo, enhance energy metabolism by mechanisms that differ between neurons and astrocytes and to a large extent serve to reaccumulate extracellular potassium ions into adjacent cells. Monoaminergic agonists also stimulate energy metabolism, but mainly or exclusively in astrocytes. Profound differences are found between the effects of excess potassium and of aminergic transmitters, suggesting that high potassium concentrations enhance neuronal–astrocytic interactions, whereas the monoamines may tend to dissociate metabolic events in neurons and in astrocytes.Key words: astrocytes, neurons, synaptosomes, potassium, noradrenaline.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献