Effect of pressure on circumferential order of adventitial collagen in human brain arteries

Author:

Canham Peter B.,Whittaker Peter,Barwick Sharon E.,Schwab Monika E.

Abstract

A key factor in the contribution of collagen fibres to tissue mechanics is the alignment of the fibres, which we studied in brain arteries, focussing on alignment changes with distending pressure. Arteries from autopsy were cannulated and fixed at different distending pressures from 0 to 200 mmHg (1 mmHg = 133.32 Pa), alcohol dehydrated, paraffin embedded, sectioned, and stained for birefringent enhancement. The polarized light microscope was set for extinction and fibre orientations were precisely determined at the rotational position of extinction for 200 positions around the artery wall. Results from 22 arterial cross sections revealed, with fixation pressure, a significant but incomplete straightening of collagen (even at 200 mmHg). The mean angular deviation of alignment of fibres was ±30° for arteries fixed at zero transmural pressure, which in contrast was ±7° for the inner and ±13° for the mid-adventitia for arteries fixed at 200 mmHg transmural pressure. We verified on vessels fixed at low pressure, by using a full wave plate in conjunction with the specificity of the interference colours, that the measurements were correct and not confused with angles at 90° to the morphological axis. Alternative tissue processing was done with two arteries fixed at 120 mmHg and processed for frozen sections; the results showed diminished variability in alignment but within the range of measurements for wax embedded tissue. We concluded that the collagen fabric could contribute to the mechanics of brain arteries but that it would be with sinusoidal rather than straightened fibres of collagen.Key words: brain artery, adventitia, collagen, organization, polarized light.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3