Time to move beyond a brainless exercise physiology: the evidence for complex regulation of human exercise performance

Author:

Noakes Timothy David1

Affiliation:

1. UCT–MRC Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town and Sports Science Institute of South Africa, Boundary Road, Newlands, 7700, South Africa (e-mail: ).

Abstract

In 1923, Nobel Laureate A.V. Hill proposed that maximal exercise performance is limited by the development of anaerobiosis in the exercising skeletal muscles. Variants of this theory have dominated teaching in the exercise sciences ever since, but 90 years later there is little biological evidence to support Hill’s belief, and much that disproves it. The cardinal weakness of the Hill model is that it allows no role for the brain in the regulation of exercise performance. As a result, it is unable to explain at least 6 common phenomena, including (i) differential pacing strategies for different exercise durations; (ii) the end spurt; (iii) the presence of fatigue even though homeostasis is maintained; (iv) fewer than 100% of the muscle fibers have been recruited in the exercising limbs; (v) the evidence that a range of interventions that act exclusively on the brain can modify exercise performance; and (vi) the finding that the rating of perceived exertion is a function of the relative exercise duration rather than the exercise intensity. Here I argue that the central governor model (CGM) is better able to explain these phenomena. In the CGM, exercise is seen as a behaviour that is regulated by complex systems in the central nervous system specifically to ensure that exercise terminates before there is a catastrophic biological failure. The complexity of this regulation cannot be appreciated if the body is studied as a collection of disconnected components, as is the usual approach in the modern exercise sciences.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3