Automatic particle detectors lead to a new generation in plant diversity investigation

Author:

ŠAULIENĖ Ingrida,ŠUKIENĖ Laura,DAUNYS Gintautas,VALIULIS Gediminas,VAITKEVIČIUS Lukas

Abstract

Technological progress in modern scientific development generates opportunities that create new ways to learn more about objects and systems of nature. An important indicator in choosing research methods is not only accuracy but also the time and human resources required to achieve results. This research demonstrates the possibilities of using an automatic particle detector that works based on scattered light pattern and laser-induced fluorescence for plant biodiversity investigation. Airborne pollen data were collected by two different devices, and results were analysed in light of the application for plant biodiversity observation. This paper explained the possibility to gain knowledge with a new type of method that would enable biodiversity monitoring programs to be extended to include information on the diversity of airborne particles of biological origin. It was revealed that plant conservation could be complemented by new tools to test the effectiveness of management plans and optimise mitigation measures to reduce impacts on biodiversity.

Publisher

University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3