Author:
FAN Sun,AHMAD Naveed,LIBO Jin,XINYUE Zhang,XINTONG Ma,HOANG Nguyen Q. V.,MALLANO Ali I.,NAN Wang,ZHUODA Yang,XIUMING Liu,NA Yao
Abstract
Hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (HCT) is mainly associated with monolignol biosynthesis, a central precursor to producing guaiacyl and syringyl lignins in plants. However, the explicit regulatory mechanism of HCT-mediated monolignol biosynthesis in plants still remained unclear. Here, the genome-wide analysis of the HCT gene family in Carthamus tinctorius as a target for understanding growth, development, and stress-responsive mechanisms was investigated. A total of 82 CtHCT genes were identified and characterized. Most of the CtHCTs proteins demonstrated the presence of two common conserved domains, including HXXXD and DFGWG. In addition, the conserved structure of protein motifs, PPI network, cis-regulatory units, and gene structure analysis demonstrated several genetic determinants reflecting the wide range of functional diversity of CtHCT-encoding genes. The observed expression analysis of CtHCT genes in different flowering stages under normal conditions partially highlighted their putative roles in plant growth and development pathways. Moreover, CtHCT genes appeared to be associated with abiotic stress responses as validated by the expression profiling in various flowering phases under light irradiation and MeJA treatment. Altogether, these findings provide new insights into identifying crucial molecular targets associated with plant growth and development and present practical information for understanding abiotic stress-responsive mechanisms in plants.
Publisher
University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca
Subject
Horticulture,Plant Science,Agronomy and Crop Science
Reference42 articles.
1. Bhardwaj R, Handa N, Sharma R, Kaur H, Kohli S, Kumar V, Kaur P (2014). Lignins and abiotic stress: an overview. Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Springer, pp 267-296. https://doi.org/10.1007/978-1-4614-8591-9_10
2. Chao N, Qi Q, Li S, Ruan B, Jiang X, Gai Y (2021). Characterization and functional analysis of the Hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (HCT) gene family in poplar. PeerJ 9:e10741.
3. Chiang YC, Levsh O, Lam CK, Weng JK, Wang Y (2018). Structural and dynamic basis of substrate permissiveness in hydroxycinnamoyltransferase (HCT). PLoS Computational Biology 14(10):e1006511. https://doi.org/10.1371/journal.pcbi.1006511
4. Chowdhury EM, Choi BS, Park SU, Lim HS, Bae H (2012). Transcriptional analysis of hydroxycinnamoyl transferase (HCT) in various tissues of Hibiscus cannabinus in response to abiotic stress conditions. Plant Omics 5(3):305.
5. Conesa A, Götz S (2008). Blast2GO: A comprehensive suite for functional analysis in plant genomics. International Journal of Plant Genomics 2008:619832. https://doi.org/10.1155/2008/619832
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献