Genome-wide investigation of Hydroxycinnamoyl CoA: Shikimate Hydroxycinnamoyl Transferase (HCT) gene family in Carthamus tinctorius L.

Author:

FAN Sun,AHMAD Naveed,LIBO Jin,XINYUE Zhang,XINTONG Ma,HOANG Nguyen Q. V.,MALLANO Ali I.,NAN Wang,ZHUODA Yang,XIUMING Liu,NA Yao

Abstract

Hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (HCT) is mainly associated with monolignol biosynthesis, a central precursor to producing guaiacyl and syringyl lignins in plants. However, the explicit regulatory mechanism of HCT-mediated monolignol biosynthesis in plants still remained unclear. Here, the genome-wide analysis of the HCT gene family in Carthamus tinctorius as a target for understanding growth, development, and stress-responsive mechanisms was investigated. A total of 82 CtHCT genes were identified and characterized. Most of the CtHCTs proteins demonstrated the presence of two common conserved domains, including HXXXD and DFGWG. In addition, the conserved structure of protein motifs, PPI network, cis-regulatory units, and gene structure analysis demonstrated several genetic determinants reflecting the wide range of functional diversity of CtHCT-encoding genes. The observed expression analysis of CtHCT genes in different flowering stages under normal conditions partially highlighted their putative roles in plant growth and development pathways. Moreover, CtHCT genes appeared to be associated with abiotic stress responses as validated by the expression profiling in various flowering phases under light irradiation and MeJA treatment. Altogether, these findings provide new insights into identifying crucial molecular targets associated with plant growth and development and present practical information for understanding abiotic stress-responsive mechanisms in plants.

Publisher

University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3