Effect of Artificial Light Conditions on Local and Systemic Resistance Response of Tobacco to TMV Infection

Author:

NAGY Zoltán Á.,JUNG András,VARGA Zsófia,KÁTAY György,ÁDÁM Attila L.

Abstract

Systemic acquired resistance (SAR) is effectively inducible in greenhouse and certain artificial light sources cause non-optimal growth of tobacco plants. Therefore, the morphological characteristics, local and systemic resistance response of N. tabacum cv. ‘Xanthi’ nc plants (harbouring NN resistance genes) to tobacco mosaic virus (TMV) infection under three artificial light sources with different spectral distribution were compared with greenhouse conditions. Statistical analysis of data was carried out by R package (R Core Team, 2015). Generally, artificial light sources (especially fluorescent tube, and halogen lamp) decreased the local resistance response and caused substantial morphological and developmental differences as compared to greenhouse conditions when plants were kept during their entire life (lifelong experimental regime) under these conditions. On the contrary, no or much less differences were found when plants were transferred from greenhouse to artificial light sources only at six leaf stage (short experimental regime). While induction of systemic acquired resistance (SAR) frequently decreased TMV lesion size by about 50-60% under greenhouse conditions, two of the three artificial light sources, fluorescent tube and halogen lamp were substantially and significantly less effective under short experimental regime conditions (25-35%). A metal halide light source with similarity to sunshine’s spectral distribution, however, partially mimicked the effect of greenhouse conditions indicating the importance of light spectrum among other factors in SAR induction and prevention of distorted growth of plants. Consequently, the optimization of the effect of artificial light sources is an important factor in experimental design studying signal transduction and biochemistry of SAR.

Publisher

University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Signals of Systemic Immunity in Plants: Progress and Open Questions;International Journal of Molecular Sciences;2018-04-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3