The Effects of Night-time Temperatures on Physiological and Biochemical Traits in Rice

Author:

ALVARADO-SANABRIA Oscar H.,GARCES-VARON Gabriel A.,RESTREPO-DIAZ Hermann

Abstract

High nighttime temperatures impair rice yield. Additionally, heat stress periods have increased during the last years in the rice areas of the tropics. The aim of this study was to physiologically characterize six genotypes of rice (a commercial cultivar (ʻF60ʼ) and five selected lines (ʻIR 1561ʼ, ʻFLO 2764ʼ, ʻLV447-1ʼ, ʻCT19021ʼ, and ʻLV1401ʼ) subjected to two nighttime temperatures (24 and 30 °C), based on different physiological traits. When the collar formed on leaf 6 of the main stem, one group of six plants in each genotype was subjected to 30 °C from 18:00 to 24:00 hours for eight days, while the other group remained at 24 °C. Differences were found in the interaction between genotype and nighttime temperatures, where a high night temperature reduced leaf photosynthesis by approximately 50% in all genotypes compared to the controls (20 µmol vs. 10 µmol CO2 m-2 s-1, respectively). In general, higher plant respiration was also observed in almost all genotypes when the plants were exposed to 30 °C. However, rice plants of the genotype ʻF60ʼ showed a constant respiration under two different night temperatures. A high nighttime temperature increased the electrolyte leakage and malondialdehyde content only in the ʻLV1401ʼ plants. Plant growth and Fv/Fm ratio were separately conditioned by the night temperature or the genotype factor. A lower total plant dry weight was found at 30 °C (620.36 mg) than in rice plants exposed to 24 °C (254.16 mg). The Fv/Fm ratio was slightly diminished at a high nighttime temperature. These results suggest that physiological variables, such as leaf photosynthesis, plant respiration, malondialdehyde content and leaf photosynthetic pigments, can be considered markers for characterizing tolerant genotypes in earlier growth phases during plant breeding programs.

Publisher

University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3