QTL underlying iron toxicity tolerance at seedling stage in backcross recombinant inbred lines (BRILs) population of rice using high density genetic map

Author:

RASHEED Adnan,WASSAN Ghulam M.,KHANZADA Hira,SOLANGI Abdul M.,AAMER Muhammad,HAN Ruicai,BIAN Jianmin,WU Ziming

Abstract

Fe is a trace element considered to be essential for rice, and it drives several metabolic processes. Fe toxicity occurs due to excessive Fe ions (Fe2+) and which, disturb cellular homeostasis and dramatically reduces the rice yield. A set of 118 BRILs made from a cross of japonica cv.’02428’ and indica ‘Changhui 891’ was used with high density bin map constructed by using high quality SNP to identify the QTL for Fe toxicity tolerance. As a whole total of 23 QTL were identified for various seedling traits, 3 under control with phenotypic difference ranging from 14.21% to 62.46%, 11 QTL under stress with phenotypic difference ranging from 7.89% to 47.39% and 9 under stressed/control ratio with phenotypic variance ranging from 9.17% to 183.50%. LOD values of QTL ranging from 4.05 to 17.04 in control, 3.41 to 8.09 in stress and 2.84 to131.63 in stress/control ratio. Shoot length (SL), root length (RL), shoot fresh weight (SFW), root fresh weight (RFW), shoot dry weight (SDW), and root dry weight (RDW), were used to estimate the degree of Fe tolerance. Many stable QTL, qSSDW-4, qSSDW-6, qRSDW-4 and qRSDW-6 affecting SDW were detected and beside this some new QTL, qRSFW-1, qRRFW-10 and qRRDW-1 were successfully identified significantly contributing to Fe toxicity tolerance in rice. The results of current study indicated that these novel regions could be transferred via markers assisted section and QTL pyramiding to develop Fe resistant lines in rice.

Publisher

University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3