Growth, yield and fruit quality of Mexican tomato landraces in response to salt stress

Author:

LADEWIG Peter,TREJO-TÉLLEZ Libia I.,SERVÍN-JUÁREZ Roselia,CONTRERAS-OLIVA Adriana,GÓMEZ-MERINO Fernando C.

Abstract

The Mexican tomato landraces ‘Campeche’, ‘Oaxaca’, ‘Puebla’, and ‘Veracruz’, and the commercial hybrid ‘Vengador’ were evaluated in response to four levels of NaCl (0, 30, 60 and 90 mM) applied through the nutrient solution in a hydroponic system under greenhouse conditions. Yield and dry biomass weight of roots, stems and leaves were reduced by increasing salinity stress, while fruit quality characteristics were improved, with the magnitude of the changes being genotype-dependent. The landrace ‘Veracruz’ produced the lowest yield, 1.06 t ha-1 under control conditions and 0.59 t ha-1 when treated with 90 mM NaCl, amounting to a 44% reduction that was, however, the lowest yield decrease among all genotypes tested. Paradoxically, ‘Veracruz’ was the only landrace displaying a reduction in the root/shoot ratio when exposed to high salinity, indicating more sensitivity to salinity as compared to the other landraces and the hybrid tested. ‘Campeche’ performed the poorest in response to salinity with the most pronounced yield reductions, recording 71.1%, 80.1% and 89.6% yield decreases when comparing plants exposed to 30, 60 and 90 mM to the control, respectively. Although at each salinity level the ‘Veracruz’ fruits showed the highest °Brix value as compared to the other landraces and the hybrid, ‘Oaxaca’ and ‘Puebla’ fruits had a greater increase in °Brix between the control and 90 mM NaCl (109.2% and 110.4%, respectively). With 90 mM NaCl, ‘Oaxaca’ fruits also registered the highest decrease in pH (6.1%) and the highest increase in total soluble sugars (106.7%) with respect to the control.

Publisher

University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3