Mitigation of salinity stress by exogenous application of cytokinin in faba bean (Vicia faba L.)

Author:

ABDEL LATEF Arafat A.,HASANUZZAMAN Md.,TAHJIB-UL-ARIF Md.

Abstract

Soil salinity limits agricultural land use and crop productivity, thereby a major threat to global food safety. Plants treated with several phytohormones including cytokinins were recently proved as a powerful tool to enhance plant’s adaptation against various abiotic stresses. The current study was designed to investigate the potential role of 6-benzyladenine (BA) to improve broad bean (Vicia faba L.) salinity tolerance. The salt-stressed broad bean plantlets were classified into two groups, one of which was sprayed with water and another was sprayed with 200 ppm of BA. Foliar applications of BA to salt-exposed plants promoted the growth performance which was evidenced by enhanced root-shoot fresh and dry biomass. Reduced proline was strongly connected to the enhanced soluble proteins and free amino acids contents, protecting plant osmotic potential following BA treatment in salt-stressed broad bean. BA balanced entire mineral homeostasis and improved mineral absorption and translocation from roots to shoots, shoots to seeds and roots to seeds in salt-stressed plants. Excessive salt accumulation increased malondialdehyde level in leaves creating oxidative stress and disrupting cell membrane whereas BA supplementation reduced lipid peroxidation and improved oxidative defence. BA spray to salinity-stressed plants also compensated oxidative damage by boosting antioxidants defence mechanisms, as increased the enzymatic activity of superoxide dismutase, catalase, peroxidase and ascorbate peroxidase. Moreover, clustering heatmap and principal component analysis revealed that mineral imbalances, osmotic impairments and increased oxidative damage were the major contributors to salts toxicity, on the contrary, BA-augmented mineral homeostasis and higher antioxidant capacity were the reliable markers for creating salinity stress tolerance in broad bean. In conclusion, the exogenous application of BA alleviated the antagonistic effect of salinity and possessed broad bean to positively regulate the osmoprotectants, ion homeostasis, antioxidant activity and finally plant growth and yield, perhaps suggesting these easily-accessible and eco-friendly organic compounds could be powerful tools for the management of broad bean growth as well as the development of plant resiliency in saline prone soils.

Publisher

University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3