Author:
LIN Jiao,XU Jing-Cheng,MA Lu-Lu,YAN Tian-Ying,YIN Cai-Xia,LV Xin,GAO Pan
Abstract
Cotton aphids, Aphis gossypii glover, are major pest threats to cotton plants, leading to quality and yield loss of cotton. Rapid and accurate evaluation on the occurrence and quantity of cotton aphids can help precision management and treatment of cotton aphids. The occurrence rules of cotton aphids on different leaf positions in cotton seedling stage for two cultivars of cotton were studied. The quantity of cotton aphids in the whole cotton seedlings were predicted based on the single leaf cotton aphid quantity. The correlation analysis results showed that cotton aphids of single leaf were significantly and positively correlated with the infected time, the all leaves of the whole plant, the whole plant contained all leaves and branches. The variance analysis results showed that cotton aphids of single leaf were significant difference with the extension of infected time. Based on different leaf positions, monitoring models were constructed respectively. The modelling set’s determination coefficient of ‘Xinluzao-45’ was greater than 0.8, while ‘Lumainyan-24’ was greater than 0.6. The best monitoring leaf position was the third for ‘Xinluzao-45’, the sixth for ‘Lumianyan-24’. From the data analysis, we can realize that it is feasible to construct a monitoring model based on the occurrence of cotton aphid in one leaf in cotton seedling, and different cotton varieties have different leaf positions. This will greatly reduce the investment of manpower and time.
Publisher
University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca
Subject
Horticulture,Plant Science,Agronomy and Crop Science
Reference24 articles.
1. Acharya TP, Welbaum GE, Arancibia RA (2020). Low tunnels reduce insect populations, insecticide application, and chewing insect damage on brussels sprouts. Journal of Economic Entomology 113:2553-2557. https://doi.org/10.1093/jee/toaa154
2. Bodhe TS, Mukherji P (2013). Selection of color space for image segmentation in pest detection. In: International Conference on Advances in Technology and Engineering (ICATE), Jan 23-25, 2013, Mumbai, India pp 1-7.
3. Boissard P, Martin V, Moisan S (2008). A cognitive vision approach to early pest detection in greenhouse crops. Computers and Electronics in Agriculture 62:81-93. https://doi.org/10.1016/j.compag.2007.11.009
4. Chen J, Fan YY, Wang T, Zhang C, Qiu ZJ, He Y (2018). Automatic segmentation and counting of aphid nymphs on leaves using convolutional neural networks. Agronomy 8:1-12. https://doi.org/10.3390/agronomy8080129
5. Gao XK, Xue H, Luo JY, Ji JC, Zhang LJ, Niu L, … Cui JJ (2020). Molecular evidence that Lysiphlebia japonica regulates the development and physiological metabolism of aphis gossypii. International Journal of Molecular Sciences 21:1-16. https://doi.org/10.3390/ijms21134610
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献