Author:
JIANING Guan,ZHIMING Xie,RASHEED Adnan,TIANCONG Wang,QIAN Zhao,ZHUO Zhang,ZHUO Zhao,GARDINER John J.,AHMAD Ishtiaq,XIAOXUE Wang,JIAN Wei,YUHONG Gai
Abstract
The soybean is one of the most widely grown legume crops which serves as a source of protein and oil. Soybean production has increased in recent years due to several breeding techniques. The use of conventional breeding approaches does not fulfil the rapidly growing demand of the world population. Newly developed genomic approaches opened the windows of opportunities to bring more genetic variation in soybean germplasm. Clustered regularly interspaced short palindromic repeats (CRISPR) has emerged as a renowned gene-editing tool that has broadened soybean research. CRISPR/Cas9 has been extensively applied to improve several essential traits in soybeans. Soybean yield, quality, and other agronomic traits have been enhanced, and research is being conducted to revolutionize the genomic area of soybeans. The development of specific soybean mutants has shown better yield and quality. In this review, we have enlisted the potential use of clustered regularly interspaced short palindromic repeats (CRISPR) in soybean improvement and highlighted the significant future prospective. Research of applied sciences revealed that CRISPR/Cas9 could improve the traits of the commercially essential soybean crop, including yield, quality, and resistance to certain biotic and abiotic factors. The use of this tool has lifted the scope of genome editing and laid a foundation for the bright future of human beings. This updated review will be helpful for future research studies focusing on the successful use of CRISPR/Cas9 in soybeans.
Publisher
University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca
Subject
Horticulture,Plant Science,Agronomy and Crop Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献