Abiotic stress enhancement tools for improving crop tolerance

Author:

ALJABRI MahaORCID

Abstract

Abiotic stresses create an unfavourable environment for plant growth, increasing the possibilities of low yield and associated economic loss. Several steps have been taken to address this problem. During the last twenty years, techniques of genetic engineering/transgenic breeding have made significant advances in gene manipulation for inciting desirable traits in transgenic plants. Transgenic techniques allow us to identify potential genes, transcription factors (TFs) and miRNAs, engaged in certain processes in plants, allowing us to gain a comprehensive understanding of the processes at molecular and physiological levels which determine plant resilience and production. The reliability and specificity of this approach ensure that future plant enhancements will be a huge success. As a result, transgenic breeding has determined to be a viable strategy in improving crop abiotic stress tolerance. The approach of CRISPR/Cas gene-editing technique to create stress-tolerant plant variants is gaining popularity right now. The researchers like this user-friendly technology because of its versatility. In the gene-editing process, the DNA sequence "CRISPR" and the endonuclease "Cas" collaborate under the supervision of specific guide RNA. In a variety of plant species, the CRISPR/Cas system is being utilized. In the majority of situations, Cas9 is employed. Various reports have surfaced which demonstrate the utilization of CRISPR/Cas9 technology to improve abiotic stress tolerance of plants. The focus of this review is on the promising and effective applications of transgenic plant breeding for enhancing environmental stress tolerance and crop productivity, as well as its recent developments.

Publisher

University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3