Do nitrogen and zinc application alleviate the adverse effect of heat stress on wheat (Triticum aestivum L.)?

Author:

MOSAVIAN Seyed Nader,EISVAND Hamid RezaORCID,AKBARI Naser,MOSHATATI Ali,ISMAILI Ahmad

Abstract

Late-season heat stress (LSH) is a limiting factor for wheat production. Besides, low zinc and poor protein diet usually is a problem in low-income countries. The primary calorie source in such countries is prepared from bread. This study aims to mitigate heat stress by zinc and nitrogen application and improve zinc and protein content in wheat grain. We did the field experiments as a split-split-plot based on a randomized complete block design with four replications to assess zinc and nitrogen’s possible mitigation effect on LSH and protein and zinc enrichment of wheat grain during two years. Factors included LSH by delay in planting date (optimum, late, and very late) as the main plot, nitrogen (0, 75, 150, and 225 kg ha–1) in subplots, and zinc (0, 10, and 20 kg ha–1) as sub-subplots. We measured yield, yield components, physiological traits, zinc, and protein contents in the grain. Results showed that the highest relative water content and cell-membrane thermal stability were attained at the optimum planting date, 150 kg N ha–1 and 20 kg Zn ha–1. The maximum chlorophyll a and carotenoids contents in wheat cells were recorded in the optimum planting date, 225 kg N ha–1, and 20 kg Zn ha–1. Heat stress reduced the grain yield. In the second year of the experiment, the grain number per unit area was more than that of the first year; however, the highest grain yield was achieved in the first year owing to the higher mean grain weight. Nitrogen application decreased the adverse effects of heat stress on grain yield by increasing the grain number. Zinc application diminished the adverse effects of heat stress by increasing the mean grain weight. The adverse impact of the LSH on grain yield was more than that of biological yield. Heat stress reduced the hectolitre weight and zinc content of the grain. Meanwhile, it increased grain protein. In general, under LSH, the application of 225 kg N ha–1 and 20 kg Zn ha–1 can reduce the adverse effects of heat on the grain quality and quantity.

Publisher

University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3