Influence of Bulk and Nanoparticles Titanium Foliar Application on some Agronomic Traits, Seed Gluten and Starch Contents of Wheat Subjected to Water Deficit Stress

Author:

JABERZADEH Amir,MOAVENI Payam,TOHIDI MOGHADAM Hamid Reza,ZAHEDI Hossein

Abstract

Titanium (Ti) is a very interesting chemical element, especially physiologically. Although Ti is not toxic for animals and humans, its effects on plants show remarkable concentration dependence. Whereas for plants, it shows beneficial effects on various physiological parameters at low doses. This study was conducted to evaluate the effect of bulk and nanoparticles titanium foliar. Application on some agronomic traits, seed gluten and starch contents of wheat under water deficit stress conditions during 2010-2011 growing seasons. The experimental design was randomized in complete blocks arranged in split-split plots with four replications. The factors included normal irrigation, water deficit stress (irrigation withholding at two growing stages of stem elongation and flowering), two growing stages for water deficit stress induction and titanium applications, five titanium concentrations, sources including control of titanium oxide (bulk), and three concentrations of 0.01%, 0.02%, and 0.03% of titanium dioxide nanoparticles. Plant height, ear weight, ear number, seed number, 1000-seed weight, final yield, biomass, harvest index, gluten, and starch contents were assayed. The results showed that water deficit stress caused significant decrease in plant growth, yield and yield components. In addition, among the different titanium treatments, titanium dioxide nanoparticles at 0.02% increased almost all agronomic traits including gluten and starch content. Thus, the application of titanium dioxide nanoparticles under conditions of water deficit stress is recommended.

Publisher

University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Cited by 242 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3