Physiological responses of coffee (Coffea arabica L.) plants to biochar application under water deficit conditions

Author:

REYES-HERRERA Daniel F.,SÁNCHEZ-REINOSO Alefsi D.,LOMBARDINI Leonardo,RESTREPO-DÍAZ Hermann

Abstract

Water deficit is one of the main abiotic stressors in crop production. The development of strategies to improve plant tolerance to water deficits has gained importance. Biochar application can be considered an alternative to mitigate abiotic stress. The use of coffee pulp to produce biochar could be a novel strategy for improving drought tolerance in coffee crops. Coffer plants cv. ‘Castillo’ were grown in pots or PVC pipes filled with silt loam soil in two separate experiments to evaluate the effect of coffee pulp biochar application on physiological responses under water deficit conditions. Four different biochar doses (0, 4, 8, and 16 t · ha-1) were used. A water deficit was imposed through progressive reduction irrigation (25%, 50%, 75%, and 90% of water lost via evapotranspiration). The leaf gas exchange, maximum quantum yield of PSII (Fv/Fm), biomass, and water status were measured. Reduced irrigation negatively affected the Fv/Fm, leaf gas exchange, biomass, and water status. Biochar (8 t ha-1) increased photosynthesis in both well-irrigated plants (6 µmol m-2 s-1) and with reduced irrigation (3.5 µmol m-2 s-1) compared to 0 t ha-1 biochar (reduced irrigation: 1.8 µmol m-2 s-1 and well irrigated: 3.9 µmol m-2 s-1). In conclusion, 8 t ha-1 biochar can be a recommended practice for coffee production, not only to capture carbon and reintroduce it to the soil, but also to alleviate the effects of moderate water deficit. In future investigations, biochar application can be evaluated as an alternative to soil management or coffee plant nutrition, and its interaction with drought stress scenarios.

Publisher

University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3