Construction of cotton leaf nitrogen content estimation model based on the PROSPECT model

Author:

XU Feng,DING Yiren,QIN Shizhe,WANG Hongyu,WANG Lu,MA Yiru,LV Xin,ZHANG Ze,CHEN Bing

Abstract

Leaf nitrogen content (LNC) is an important index to measure the nitrogen deficiency in cotton. The rapid and accurate monitoring of LNC is of great significance for understanding the growth status of cotton and guiding precise fertilization in the field. At present, the hyperspectral technology monitoring of LNC is very mature, but it is interfered with by external factors such as shadow and soil, and data acquisition is still dependent on manpower. Therefore, on the basis of clarifying the correlation and quantitative relationship between physiological parameters and cotton LNC, the 400-2500 nm spectral curve was simulated based on PROSPECT-5 model. Combined with the measured spectra, the sensitive bands of leaf nitrogen content were screened, and four machine learning algorithms based on the reflectance of the sensitive bands were compared to construct a model for the estimation of LNC in cotton and determine the optimal model. The results show the following: (1) The parameter with the best correlation with nitrogen content was Cab, and the linear relationship was y=0.3942x+12.521, R2=0.81, RMSE=12.87 g/kg. (2) The shuffled frog leaping algorithm (SFLA) and the successive projections algorithm (SPA) were used to screen the relevant bands sensitive to LNC. SFLA selected nine characteristic bands, mainly distributed between 700 and 750 nm. SPA screened seven characteristic bands, mainly distributed between 670 and 760 nm. The characteristic bands of both screening methods were distributed near the red edge. (3) Based on the sensitive bands, the four machine learning algorithms were compared. Among them, the band modeling of SFLA screening under the random forest (RF) algorithm was the best (modeling set R2=0.973, RMSE=1.001 g/kg, rRMSE=3.41%, validation set R2=0.803, RMSE=3.191 g/kg, rRMSE=10.85%). In summary, this study proposes an optimal estimation model of cotton leaf nitrogen content based on the radiative transfer model, which provides a theoretical basis for the dynamic, accurate, and non-destructive monitoring of cotton leaf nitrogen content.

Publisher

University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3