Three-dimensional bone tissue substitute based on a human mesenchymal stem cell culture on a nanofiber carrier and inorganic matrix

Author:

Krbec Martin,Plíštil Lukáš,Matoušková Eva,Mandys Václav,Ježek Jakub,Sedlinská Markéta,Džupa Valér

Abstract

The aim was to construct a composite structure for bone tissue substitute on the basis of a degradable composite of an organic nanofiber carrier and an inorganic matrix in 3D, and to achieve subsequent colonisation by differentiated human mesenchymal stem cells (hMSC) towards osteocytes. We developed an active bone tissue substitute using nanofiber technology for a polycaprolactone (PCL) scaffold with the addition of hydroxyapatite and the colonisation of both components with hMSC with the ability of differentiation towards osteocytes. The constructed composition included the components necessary for bone healing (inorganic and cellular) and it also forms a spatially-oriented 3D structure. We used polycaprolactone Mw 70,000 with electrostatic spinning for the formation of nanofibers using a modified NanospiderTM method. For the inorganic component we used orthophosphate-calcium silicate with a crystal size of 1-2 mm which the nanofiber membrane was coated with. Both components were connected together with a tissue adhesive based of fibrin glue. Cultivated hMSC cells at a concentration of 1.2 × 104/cm2 were multiplied in vitro and then cultivated in the expansion medium. HMSC overgrew both the PCL membrane and the Si-CaP crystals. After colonisation with cultivated cells, this composite 3D structure can serve as a three-dimensional bone tissue replacement.

Publisher

University of Veterinary and Pharmaceutical Sciences

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3