Abstract
Three methods for the identification of multivariate outliers (Rousseeuw and Van Zomeren, 1990; Becker and Gather, 1999; Filzmoser et al., 2005) are compared. They are based on the Mahalanobis distance that will be made resistant against outliers and model deviations by robust estimation of location and covariance. The comparison is made by means of a simulation study. Not only the case of multivariate normally distributed data, but also heavy tailed and asymmetric distributions will be considered. The simulations are focused on low dimensional (p = 5) and high dimensional (p = 30) data.
Publisher
Austrian Statistical Society
Subject
Applied Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献