Subjective Elicitation of Dirichlet Hyperparameters Using Past Data: A Study of Ovarian Cancer Patients

Author:

Gupta Akanksha,Upadhyay S K

Abstract

Elicitation of prior plays a very important role in Bayesian paradigm especially when dealing with rare disease problems in medical field. The reason being that we do not get enough data to draw valid inferences always. Since the subject of study is human population, one cannot do experiments with their health. The prior distribution supports the final results by some additional information gained from the experts. In any case if an appropriate expert is not available, we can use past data to get information about the prior and its hyperparameters. The present paper provides a technique of elicitation of prior hyperparameters based on a well known multinomial-Dirichlet model. Since the main focus is on medical data problems, the inferences on odds ratios and interaction parameters are also provided. Numerical illustration is based on a real dataset from Israel on patients having ovarian cancer. Although the details have been given in the context of ovarian cancer patients, the development in the paper is equally well applicable for any such disease.

Publisher

Austrian Statistical Society

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3