Robust Independent Component Analysis Based on Two Scatter Matrices

Author:

Nordhausen Klaus,Oja Hannu,Ollila Esa

Abstract

Oja, Sirkiä, and Eriksson (2006) and Ollila, Oja, and Koivunen (2007) showed that, under general assumptions, any two scatter matrices with the so called independent components property can be used to estimate the unmixing matrix for the independent component analysis (ICA). The method is a generalization of Cardoso’s (Cardoso, 1989) FOBI estimate which uses the regular covariance matrix and a scatter matrix based on fourth moments. Different choices of the two scatter matrices are compared in a simulation study. Based on the study, we recommend always the use of two robust scatter matrices. For possible asymmetric independent components, symmetrized versions of the scatter matrix estimates should be used.

Publisher

Austrian Statistical Society

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-Gaussian Component Analysis: Testing the Dimension of the Signal Subspace;Analytical Methods in Statistics;2020

2. An overview of properties and extensions of FOBI;Knowledge-Based Systems;2019-06

3. Independent component analysis: A statistical perspective;WIREs Computational Statistics;2018-06-27

4. New algorithms for M-estimation of multivariate scatter and location;Journal of Multivariate Analysis;2016-02

5. On the Computation of Symmetrized M-Estimators of Scatter;Recent Advances in Robust Statistics: Theory and Applications;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3